
Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of
Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-
free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National
Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory
strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the
viewpoint of a publication or guarantee its technical correctness.

FORM 836 (10/96)

LA-UR-01-3492
Approved for public release;
distribution is unlimited.

Title:
A VISCOELASTIC MODEL FOR PBX BINDERS

Author(s): E. M. Mas and B. E. Clements
(T-1) Theoretical Division, Los Alamos National
Laboratory, Los Alamos, NM 87545
B. Blumenthal, C. Cady, G. T. Gray III and C. Liu
(MST-8) Materials Science Division, Los Alamos
National Laboratory, Los Alamos, NM 87545

Submitted to:

http://lib-www.lanl.gov/la-pubs/00818442.pdf



A VISCOELASTIC MODEL FOR PBX BINDERS

E. M. Mas and B. E. Clements

(T-1) Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545

B. Blumenthal, C. Cady, G. T. Gray III and C. Liu

(MST-8) Materials Science Division, Los Alamos National Laboratory, Los Alamos, NM 87545

Abstract. Stress-strain measurements done at different rates and temperatures along with measurements
of the rate- and temperature-dependent dynamic storage modulus have allowed us to construct a generalized
Maxwell model for the linear viscoelastic response of plasticized estane. A theoretical analysis is
presented to include effects of impurites.

INTRODUCTION

  Complete knowledge of the thermo-mechanical
behavior of the constituents of PBX-9501 is required
for any micromechanics method to be a useful tool
for modeling its behavior. The primary constituents
of PBX 9501 are the explosive cyclotetramethylene-
tetranitramine (HMX) crystals and the inert
plasticized estane binder matrix. Estane 5703 is a
polyester polyurethane elastomer manufactured by
the B.F. Goodrich Company with a density of 1.19
gm/cm3. The polymeric binder shows dramatic
sensitivity to changes in strain rates and
temperatures. For example, a change in the
temperature from -50 C to 50 C will have an
associated change in the shear modulus of five orders
of magnitude.  Obviously,  a successful theory for
PBX 9501 must account for this behavior. Because
of recent experimental effort, much high-quality
stress-strain data has become available for the
plasticised binder. A primary goal was to use this
data to formulate a generalized Maxwell model
(GMM) thermo-mechanical constitutive law for the
binder. While a GMM constitutive law has
immediate applications for PBX 9501, our
theoretical analysis used to obtain the constitutive
law has interest to the general community involved
with plastic bonded high explosives.

  The aforementioned stress-strain data was measured
by the LANL’s Material Structure/Property Group
(MST-8) and was obtained by several different
experimental methods. An Intron 5567 testing
machine was used for measuring uniaxial stress-

strain data for rates in the range of 10
-4 s

-1
 to 1 s

-1 A
hydraulic MTS 810 material testing machine was

used for rates between 10
-1 s

-1
 and 10 s

-1
, while

Split-Hopkinson Pressure Bar (SHPB) was used for

rates around 10
3 s

-1
.  Our approach is to use the

torsion pendulum experiments of G. Flowers1 to
construct the GMM. Upon determining the GMM
we then use the Boltzman Superposition Principle
(BSP) to calculate the stress-strain response predicted
by our GMM for the binder. By comparing our
stress-strain predictions with experiments involving
Instron, MTS, and SHPB, which are uniaxial stress
experiments, we can “fine tune’’ our GMM.
Flowers' torsion pendulum data are functions of
sinusoidal rather uniaxial loading strains.
Consequently, a theoretical  analysis is required to
convert his data into a form useful for our
micromechanics work.

THEORETICAL ANALYSIS

  When the deformation is small, the theory of linear
viscoelasticity assumes that the dynamic behavior of
any viscoelastic material can be described in terms of



various relaxation processes. These dynamic
processes originate from the motions that occur in
any complicated entangled molecular network
comprising the viscoleastic material. Since the
number of relaxation processes are typically huge, a
continuous distribution of relaxation times is
required to fully describe the dynamic behavior of the
material.  The corresponding transient shear moduli
can be expressed in terms of this relaxation time
distribution as:

  G ( t ) = Ge + H ( τ ) e− t / τ d ( ln τ )
− ∞

+ ∞
∫  , (1)

where H d( ) (ln )τ τ  represents the relaxation times
in the range lnτ  to ln (ln )τ τ+ d , and Ge , if
different from zero, is called the equilibrium
modulus.
  The Generalized Maxwell Model of viscoelasticity
replaces the spectrum of relaxation times with a
discrete spectrum labeled by τ i

     H ( τ ) = Gi
i =1

n
∑ τ i δ ( τ − τ i )  , (2)

where Gi  is the strength of the ith mode.  In this
approximation, the shear modulus becomes:

     G ( t ) = Ge + Gi
i =1

n
∑ e− t / τ i  . (3)

Flowers has determined the storage and loss moduli,
G ' (ω ) and G" (ω ) , respectively, for the binder
over a temperature range of -150 C to 75 C, and
driving frequencies from 0.6 radians s-1 to 60 radians
s-1. To extend the effective frequency range, Flowers
invoked the well-known time-temperature
superposition theory of Williams, Landel and Ferry2

(WLF), by introducing a time-temperature shift
factor aT .  Figure 1 shows a numerical fit to
Flowers’ measurements of Log G ' as a function of
Log ( aTω ) , at a reduced temperature T0  of 19 C.
  Flowers also provided data on the temperature
dependence of his shift function.  We we fit his shift
function to a WLF equation:

     Log ( aT ) = −6. 5
( T − T0 )

120 + T − T0
 . (4)

The storage modulus G ' (ω ) is related to the shear
relaxation function by

     G ' (ω ) = ω dt '
0

∞
∫ sin (ωt ' ) G ( t ' ) . (5)

Thus

G ' (ω ) = Ge + H (ω ) d ( ln τ )
− ∞

+ ∞
∫

ω2τ 2

1 + ω2τ 2

             = Ge + Gi
i =1

n
∑

ω2τ i
2

1 + ω2τ i
2 . (6)
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FIGURE 1.  The storage moduli  plotted against the driving
frequency for the PBX 9501 binder.

From G ' (ω ) we determine the Gi , for choice of

relaxation times τ i T
ia= −1 5 10 7. ( )  (in seconds).

Since the coefficients in Eq. (6) are the same in
those of Eq. (3) we simultaneously get the correct
coefficients to use in our transient shear moduli.

ELEMENT LOG Gi ELEMENT LOG Gi

1 -2.38 12 0.418
2 -2.13 13 1.11
3 -1.80 14 1.72
4 -1.42 15 2.35
5 -1.17 16 2.64
6 -1.05 17 2.66
7 -0.937 18 2.54
8 -0.847 19 2.40
9 -0.790 20 2.25
10 -0.654 21 2.07
11 -0.323 22 1.88

TABLE 1.  22-element Maxwell model for plasticized estane.
The units are MPa for Gi .



  We approximate the bulk modulus of the binder as
the strain-rate independent value of 3.65 GPa.  For
the case of uniaxial stress, the relevant modulus is
Young’s, given by

      E t
KG t

K G t
G t( )

( )

( )
( )=

+
≈

9

3
3 .    (7)

Having determined G ( t )  from Eq. (3), we then
determine the stress-strain behavior from

     σ ( t ) = E ( t − t ' )
0

t

∫ ε̇ ( t ' ) dt ' . (8)

Our theoretical stress-strain curves fron Eq. (8) are
compared to those measured at MST-8.  A fine-tuned
GMM was then constructed to improve the
agreement (Table 1) although only small changes in
the origianl GMM were required.  The final stress-
strain curves are compaired to experiment in Fig. 2.

RESULTS

  Compressive stress-strain curves measured at
MST-8, and those obtained by our theoretical
analysis are shown in Fig. 2 for room temperature,
low strain rates, and in Figs. 3, and 4 for higher
strain rates and colder temperatures.
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FIGURE 2. Room temperature, low strain-rate compression
stress-strain curves for the plasticised binder. At each strain
rate, two stress-strain curves are shown, one corresponding to
direct stress-strain measurements taken at MST-8, and one
corresponding to our theoretical analysis of Flowers’ torsion
pendulum measurements.

  It is clear, with the exception of Fig. 4, that the
agreement between our analysis and the MST-8 data
is very good. In these temperature and strain rate

regimes our derived constitutive law using the
GMM, plus the temperature dependence from the
WLF equation (Eq. (4)) provide a good description of
the thermo-mechanical behavior of the binder.  
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FIGURE 3.  TOP: Split Hopkinson Pressure Bar stress-strain
data taken at 17 C and a strain rate of 1850 s-1. The dashed
curve is our corresponding theoretical analysis of Flowers’
torsion pendulum measurements.  BOTTOM:  Split Hopkinson
Pressure Bar stress-strain data taken at 0 C and a strain rate of
2000 s-1. The dashed curve is our corresponding theoretical
analysis of Flowers’ torsion pendulum measurements.

  At low temperatures and high strain rates,
however, the assumptions inherent in the
construction of the binder constitutive law begin to
fail, and the analysis yields strong discrepancies with
the uniaxial SHPB data (Fig. 4). The likely cause of
this discrepancy is that, at very low temperatures and
high strain rates, the glass-like behavior of the
binder has associated yielding which begins to



dominate the stress-strain response, thus invalidating
the assumptions of linear viscoelasticity.

 FIGURE 4.  Split Hopkinson Pressure Bar stress-strain data
taken at -20 C and a strain rate of 1750 s-1. The dashed curve is
our corresponding theoretical analysis of Flower’s torsion
pendulum measurements. The plateau  region in the Split
Hopkinson Pressure Bar measurements indicate that the binder
is in a regime where linear viscoelasticity begins to fail.

  We have extended GMM for the binder to include
elastic impurites. The entire composite will respond
viscoelastically, obtaining its strain rate dependence
from the matrix. As with the plasticized estane, we
expect that the BSP will provide an adequate
description for the time dependent stress field,
σ ij t( ), for the composite,

         σ εij

t

ijkl
C

klt dt L t t t( ) ' ( ' ) ˙ ( ' )= −∫
0

, (9)

where L tijkl
C ( )  is the stress relaxation function for the

composite and ε̇ ( t )  is the strain rate tensor. L tijkl
C ( )

can be expressed as

        
L t K t G t

G t

ijkl
C C C

ij kl

C
ik jl il jk

( ) ( ) ( )

( )

= −[ ]
+ +[ ]

2
3 δ δ

δ δ δ δ
, (10)

where K tC ( )  and G tC ( )  are the composite bulk
and shear relaxation functions, respectively. Our
derivation of these two functions begins with the
theory of Weng and coworkers3. These authors
generalized Eshelby-Mori-Tanaka theory to include
linear viscoelastic materials.
  After a rather length analysis we are able to
express the composite moduli in a modified GMM.

The coefficients are now functions of the bulk
moduli and concentrations of the binder and the
impurites, K m , cm and K f , cf respectively. Note,
that unlike the pure binder, the composite now has
a time-dependent bulk relaxation function. The
result of our analysis gives:

            K t K K eC C
i
C t i

i

M

( ) /= + −

=
∑0

1

τ (12)

            G t G G eC C
i
C t i

i

M

( ) /= + −

=
∑0

1

τ , (13)

where the coefficients, Ki
C  and Gi

C , are given by

K
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C
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=
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≠
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0( )   (14)

where Gi
m  are the coefficients of the GMM for the

unfilled binder provided in Table 1. This analysis
has be extended to the general case of ellipsoidal
shaped impurities.
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